UNIVERSIDAD AUTÓNOMA AGRARIA "ANTONIO NARRO"

UNIDAD LAGUNA

DIVISIÓN REGIONAL DE CIENCIA ANIMAL

La alta producción de leche no disminuye la respuesta sexual de las cabras anéstricas sometidas al efecto macho

POR:

JÁQUEZ RODRÍGUEZ LUIS ANTONIO

TESIS:

PRESENTADA COMO REQUISITO PARCIAL PARA
OBTENER EL TÍTULO DE:

MÉDICO VETERINARIO ZOOTECNISTA

UNIVERSIDAD AUTÓNOMA AGRARIA ANTONIO NARRO UNIDAD LAGUNA

DIVISIÓN REGIONAL DE CIENCIA ANIMAL
JÁQUEZ RODRÍGUEZ LUIS ANTONIO

"La alta producción de leche no disminuye la respuesta sexual de las cabras anéstricas sometidas al efecto macho"

TESIS

QUE SE SOMETE A LA CONSIDERACIÓN DEL H. JURADO EXAMINADOR COMO REQUISITO PARCIAL PARA OBTENER EL TÍTULO DE

MÉDICO VETERINARIO ZOOTECNISTA

APROBADA POR

PRESIDENTE:	DR. JOSE ALFREDO FLORES CABRERA
VOCAL:	DR. HORACIO HERNÁNDEZ HERNÁNDEZ
	Josep Violen
VOCAL:	DR. JESUS VIELMA SUFUENTES

VOCAL SUPLENTE: DR. GONZALO FITZ RODRÍGUEZ

MC. RAMÓN ALFREDO DELGADO GONZÁLEZ

COORDINADOR DE LA DIVISIÓN REGIONAL DE CIENCIA ANIMATOR de la División Regional de Ciencia Animal

TORREÓN, COAHUILA, MÉXICO

JUNIO DE 2016

UNIVERSIDAD AUTÓNOMA AGRARIA "ANTONIO NARRO" UNIDAD LAGUNA DIVISIÓN REGIONAL DE CIENCIA ANIMAL

JÁQUEZ RODRÍGUEZ LUIS ANTONIO

"La alta producción de leche no disminuye la respuesta sexual de las cabras anéstricas sometidas al efecto macho"

TESIS

QUE SE SOMETE A LA CONSIDERACIÓN DEL COMITÉ ASESOR, COMO REQUISITO PARCIAL PARA OBTENER EL TÍTULO DE:

MÉDICO VETERINARIO ZOOTECNISTA

ASESOR PRINCIPAL DR. JOSÉ ALFREDO FLORES CABRERA

DR. HORACIÓ HERNÁNDEZ HERNÁNDEZ

ASESOR DR. JESÚS VIELMA SIFUENTES

DR. GONZALO FITZ-RODRÍGUEZ

MC. RAMÓN ALFREDO DELGADO GONZÁLEZ

COORDINADOR DE LA DIVISIÓN REGIONAL DE CIENCIA ANIMAL Animal

TORREÓN, COAHUILA, MÉXICO

JUNIO DE 2016

DEDICATORIA

A DIOS y la Virgen de Guadalupe:

Por ser tan generoso conmigo, porque aun cuando te olvide, ofendí y reproche, estuviste en esos momentos tan difíciles de mi vida en los cuales las fuerzas se me terminaron, tu seguías ahí señor guiando siempre mis pasos por el camino del bien. Gracias por darme la oportunidad de concluir una meta más en mi vida.

A mis padres:

Miguel Ángel Jáquez Cárdenas & Neli Rodríguez Franco

Por darme ese don tan hermoso que se llama vida, además del amor confianza, cariño y el tiempo que me han brindado para que creciera como persona, porque gracias a ustedes he comprendido el valor de la vida. Por eso y por más mil gracias, los quiero.

A mis Hermanos:

Miguel Ángel Jáquez Rodríguez & Rocio Paola Jáquez Rodríguez

Les doy las gracias por el cariño y el amor de hermanos por todo el apoyo que me brindaron durante mi carrera y porque creyeron en mí.

Mis Abuelos:

Jesús José Jáquez Castillo& Guadalupe Cárdenas López

Guadalupe Rodríguez Mata & Manuela Franco Álvarez

Gracias por darme sus consejos y cariño incondicional.

A mi esposa e hijo:

Yesica Lorena Sáenz Quiroz & Emiliano Jáquez Sáenz Les doy las gracias por todo el amor y cariño que me diste durante toda la carrera y este gran paso no es solo mío, ya es de los tres.

AGRADECIMIENTOS

Dr. José Alfredo Flores Cabrera: Por darme la oportunidad para realizar la tesis por su gran apoyo y asesoramiento, sobre todo los consejos y la confianza brindada en mí, muchas gracias.

Gracias a los integrantes del CIRCA: Dr. José Alberto Delgadillo Sánchez, Dr. Horacio Hernández Hernández, Dr. Gerardo Duarte Moreno, Dr. Jesús Vielma Sifuentes, Dr. Gonzalo Fitz e Ilda G. Fernández García por permitirme realizar la tesis en tan prestigiado centro de investigación.

A todas aquellas personas y profesores que durante la carrera me apoyaron en mi formación profesional (UAAAN).

A mis amigos:

Por compartir momentos increíbles junto a ustedes además de recibir siempre su apoyo en todos los aspectos.

RESUMEN

En la presente tesis se investigó si una alta producción de leche disminuye la respuesta sexual y la fertilidad de las cabras anéstricas sometidas al efecto macho. Se utilizaron 28 hembras caprinas multíparas anovulatorias. El grupo de alta producción (n =14) de cabras tenían una producción promedio de 0.729 ± 0.65 kg y el segundo grupo (n=14) de hembras tenían una producción de 1.386 ± 0.85 kg. Se utilizaron además, 2 machos cabríos los cuales fueron tratados previamente con 2.5 meses de días largos artificiales (16hr/luz/día) a partir del 1 de noviembre. Cuarenta y ocho horas antes de la introducción de los machos, a cada hembra de los dos grupos se le aplicó por vía Intramuscular 25 mg de progesterona. El 28 de marzo (época de reposo sexual natural) a las 8:00 AM, los machos fueron puestos en contacto con las hembras. Cada grupo de hembras fue puesto en contacto con 1 macho. Los machos permanecieron con las hembras durante 5 días consecutivos y diariamente fueron intercambiados entre los dos grupos de hembras. La actividad estral se determinó 3 veces al día. El criterio que se utilizó para determinar si una hembra estaba en estro fue la inmovilidad y/o aceptación de la monta por parte del macho. El porcentaje de hembras que resultaron gestantes se determinó mediante una ecografía transrectal a los 35 días después de la introducción de los machos. Para ello, se utilizó un equipo de ultrasonido equipado con una sonda para uso transrectal de 7.5 MHz. El porcentaje de hembras que manifestaron actividad estral no fue diferente entre el (GAP) (13/14; 92.9 %) y el (GBP) (14/14; 100%; P>0.05). De igual manera, el tiempo que transcurrió entre la introducción de los machos y el inicio del estro no

fue diferente entre los 2 grupos de hembras (P>0.05). En el porcentaje de hembras

que resultaron gestantes tampoco existió diferencia estadística entre los dos

grupos de hembras (P>0.05). Con base a los resultados del presente estudio se

puede concluir que una alta producción de leche no influye en la manifestación de

la respuesta estral, ni en la fertilidad de las hembras caprinas anéstricas cuando

son estimuladas mediante el efecto macho en combinación con la aplicación de

progesterona.

Palabras clave: Cabras, producción de leche, efecto macho, actividad estral,

fertilidad.

ÍNDICE

DEDICATORIA	i
AGRADECIMIENTOS	iii
RESUMEN	iv
ÍNDICE	vi
ÍNDICE DE FIGURAS	viii
ÍNDICE DE TABLAS	ix
INTRODUCCIÓN	1
OBJETIVOS	4
HIPÓTESIS	4
REVISIÓN DE LITERATURA	5
1. Manifestación de una estacionalidad reproductiva de los	caprinos
	5
1.1. Hembras	5
1.2. Machos	6
2. Tratamiento fotoperiódico en los machos cabríos para inc	ducir su
actividad sexual durante el periodo de reposo	7
3. Inducción de la actividad sexual de las cabras mediante	el efecto
macho utilizando machos foto-estimulados	8
4. Efecto de la producción de leche en la actividad reproduc	ctiva de
las hembras	10
MATERIALES Y METODOS	12

1. Localización del experimento y características climáticas	13
2. Animales experimentales utilizados en el estudio	13
2.1. Machos	13
2.2. Hembras	14
2.3. Formación de grupos experimentales de hembras	14
2.4. Aplicación Intramuscular de progesterona	15
3. Inicio del contacto entre hembras y machos	15
4. Variables evaluadas en el estudio	16
4.1. Actividad estral	16
4.2. Porcentaje de gestación	16
5. Análisis de datos	16
RESULTADOS	17
1. Actividad estral	17
1.1. Porcentaje de hembras en estro	18
1.2. Latencia al estro	18
1.3. Tasa de gestación	20
DISCUSIÓN	21
CONCLUSIÓN	24
ITERATURA CITADA	25

ÍNDICE DE FIGURAS

Figura 1.	Porcentaje de hembras que manifestaron actividad estral después de ser expuestas a machos foto-estimulados para inducir su actividad sexual durante el anestro estacional. Un grupo de hembras tenía una alta producción láctea y el otro grupo una baja producción láctea. Todas las hembras fueron tratadas con una dosis única de 25 mg de progesterona 48 horas antes de la introducción de los machos	9
Figura 2.	Porcentaje de hembras que fueron diagnosticadas gestantes a los 35 días después de ser expuestas a machos foto-estimulados para inducir su actividad sexual. Un grupo de hembras caprinas tenía una producción láctea de 1.386 ± 0.85 kg (AP) y el otro grupo una producción láctea de 0.729± 0.65 kg (BP). Todas las hembras fueron tratadas con una dosis única de 25 mg de progesterona 48 horas antes de la introducción de los machos	

ÍNDICE DE TABLAS

Tabla I. Floudectori de lecrie de las cabras	Tabla 1. Producción de leche de las cabras.	1	5
--	---	---	---

INTRODUCCIÓN

Una limitante en la caprinocultura es la estacionalidad de la producción como consecuencia de la estacionalidad reproductiva que manifiestan los caprinos en la mayoría de las regiones subtropicales (Delgadillo et al., 1999; Duarte et al., 2008). En la Comarca Lagunera, una de las principales regiones productoras de leche de cabra y cabrito del país, la mayoría de las cabras (>80 %) tienen sus partos en los meses de diciembre a enero. Lo anterior ocasiona que sus productos se concentren en esa época del año (Saenz-Escárceaga et al., 1991). Esta problemática en la producción caprina puede disminuir si los partos de las hembras ocurren fuera de la estación natural. Para ello, en los últimos 15 años se han desarrollado diversos métodos de inducción y sincronización de la actividad sexual fuera de la estación natural tanto en machos como en hembras. Por ejemplo, en machos cabríos la manipulación del fotoperiodo puede inducir la actividad sexual de los mismos durante el periodo de reposo sexual natural. En efecto, la exposición de los machos cabríos durante el otoño e invierno a días largos artificiales (16 h luz/día) durante 75 días induce una intensa actividad sexual durante el periodo de reposo sexual natural (febrero-abril; Flores et al., 2000; Delgadillo et al., 2002). A su vez, estos machos foto-estimulados logran estimular la actividad endocrina y sexual de las cabras anovulatorias durante el periodo de anestro estacional (Flores et al., 2000; Delgadillo et al., 2002; Vielma et al., 2009; Fernández et al., 2011; Bedos et al., 2010; Ponce et al., 2015; Muñoz et al., 2016). De esta manera, se logra tener leche y cabrito fuera de la época natural (agosto-octubre). Existen diversos factores que

pueden afectar la respuesta de las hembras estimuladas mediante el efecto macho. Uno de ellos es el comportamiento sexual de los machos. Varios estudios han demostrado que cuando se utilizan machos foto-estimulados sexualmente activos la mayoría de las hembras manifiestan actividad estral y ovulatoria a los pocos días de iniciado el contacto con los machos. Por el contrario, los machos no tratados son incapaces inducir la actividad sexual de las cabras anéstricas (Flores et al., 2000; Delgadillo et al., 2002; Fernández et al., 2011). Otro factor que podría afectar la respuesta sexual de las hembras caprinas sometidas al efecto macho es la producción de leche. En vacas, por ejemplo, existen estudios que demuestran que el intervalo entre el parto y la manifestación del primer estro es mayor en vacas altas productoras que aquellas que producen menos leche (Harrison et al., 1989). De igual manera, se ha reportado que las vacas altas productoras no manifiestan estro en la primera ovulación postparto, o bien manifiestan una conducta de estro más débil que aquellas de baja producción (Harrison et al., 1990). También se ha reportado que en las vacas Holstein altas productores de leche la duración del estro es menor que en las vacas de baja producción, lo anterior disminuye considerablemente la fertilidad de esas hembras dado que los celos pasan inadvertidos. (Lopez et al., 2004).

En las cabras, no existen estudios que indiquen la influencia de una alta producción de leche de las hembras sobre la actividad sexual y reproductiva. En esta especie estacional, la introducción de un macho durante el anestro estimula la actividad endocrina y sexual de las cabras anéstricas mediante un fenómeno denominado efecto macho (Chemineau *et al.*, 1987; Flores *et al.*, 2000). La

proporción de hembras que ovulan o muestran comportamiento estral después de la introducción de los machos varía del 80 al 95 %. La fertilidad de las hembras con esta técnica varía del 60 al 80 %, dependiendo de las condiciones del estudio. En la mayoría de los estudios reportados hasta la fecha, existe una baja proporción de hembras que no responden, otras responden con una latencia más larga y algunas no quedan gestantes. Se desconoce si esas hembras que no responden o no son preñadas las hembras que producen más leche. A nuestro conocimiento, no se han realizado estudios para explorar esta posibilidad. Por ello, el objetivo del presente estudio fue investigar la influencia de la alta producción de leche en la respuesta estral y la fertilidad de las cabras cuando son estimuladas mediante el efecto macho.

OBJETIVOS

Determinar si una alta producción de leche provoca una disminución de la respuesta sexual y la fertilidad de las cabras anéstricas cuando son sometidas al efecto macho en combinación con la aplicación de progesterona.

HIPÓTESIS

La alta producción de leche disminuye la respuesta sexual y la fertilidad de las cabras anéstricas sometidas al efecto macho en combinación con la aplicación de progesterona.

REVISIÓN DE LITERATURA

1. Manifestación de una estacionalidad reproductiva de los caprinos

La reproducción constituye uno de los procesos naturales más importantes dentro del ciclo de vida de una especie, ya que juega un papel determinante en la perpetuación de la misma (Chemineau, 1993). Sin embargo, algunas especies de animales, como los ovinos y los caprinos tienen una reproducción de tipo estacional, es decir, se reproducen únicamente durante una época específica del año. Esta estrategia reproductiva ha sido desarrollada durante miles de años con la finalidad de asegurar la supervivencia de su descendencia y por consiguiente de su especie. Así, estas especies utilizan las condiciones del medio ambiente para establecer una estrategia reproductiva bien definida: seleccionan la época del año más favorable para sus partos (alrededor de la primavera), donde encuentran el clima y la disponibilidad de alimentos adecuados para el desarrollo de los recién nacidos (Bronson, 1989).

1.1. Hembras

En el caso de las hembras caprinas, se observa un periodo de anestro y anovulación con ausencia de ciclos estrales, receptividad sexual y ovulación (Duarte et al., 2008; Delgadillo et al., 2012). La otra etapa fisiológica, conocida como época reproductiva, se caracteriza por la ocurrencia de ciclos estrales, conducta estral y ovulaciones en las hembras. Por otro lado, el periodo de anestro en estas cabras sucede entre abril y agosto (Duarte *et al.*, 2008). Durante este periodo de reposo las hembras no manifiestan actividad estral ni ovulaciones.

1.2. Machos

Los machos cabríos locales del norte de México también manifiestan una estacionalidad reproductiva muy marcada. Estos animales manifiestan intensa actividad sexual de mayo a diciembre y durante ese tiempo se registran altas concentraciones plasmáticas de testosterona, un intenso comportamiento y olor sexual, un elevado peso testicular y una elevada producción espermática (Delgadillo *et al.*, 1999). En cambio, en el periodo de reposo sexual, el cual ocurre de enero a abril, estas mismas variables disminuyen considerablemente (Delgadillo *et al.*, 1999). Existen varios estudios que demuestran que la estacionalidad reproductiva de los caprinos locales de la comarca Lagunera, al igual que en otras regiones del mundo, es regulada por las variaciones de la duración del día o fotoperiodo (Malpaux, 1997; Thiéry *et al.*, 2002; Delgadillo *et al.*, 2004; 2012; Duarte et al., 2010).

En los machos se observa un periodo de reposo sexual durante el cual disminuye notablemente la producción de espermatozoides, las concentraciones de LH, testosterona y la líbido (Delgadillo et al. 2012). En los machos, se mejora la calidad y cantidad espermática, hay un incremento en las concentraciones de la hormona luteinizante (LH), testosterona y se mejora notablemente el comportamiento sexual (Delgadillo et al., 1999; Malpaux *et al.*, 1997). En las hembras caprinas locales de la Comarca Lagunera, la época reproductiva se desarrolla durante el otoño y el invierno (septiembre-marzo; Duarte *et al.*, 2008) y se caracteriza por la presentación regular de estros y ovulaciones cada 21 días en promedio

2. Tratamiento fotoperiódico en los machos cabríos para inducir su actividad sexual durante el periodo de reposo

Como se mencionó anteriormente, varios estudios han demostrado que la estacionalidad reproductiva de los caprinos es causada por las variaciones del fotoperiodo. Lo anterior ha permitido diseñar tratamientos fotoperiódicos para manipular artificialmente la duración de las horas luz del día y con ello, manipular o controlar la actividad reproductiva de los animales. En los machos, un tratamiento fotoperiódico basado en la sucesión de un periodo de días largos artificiales (DL) seguidos del fotoperiodo natural o de la inserción subcutánea de implantes de melatonina, permite inducir su actividad sexual fuera de la estación reproductiva natural (Flores *et al.*, 2000; Delgadillo *et al.*, 2001; 2002; Pellicer-Rubio *et al.*, 2007). Por ejemplo, en los carneros lle de Francia y los machos cabríos Alpinos, la aplicación de 2 meses de días largos artificiales (16 h de luz) durante enero y febrero, seguidos de la inserción de implantes subcutáneos de melatonina, estimula la actividad sexual durante abril y mayo (ovinos: Chemineau *et al.*, 1992; machos cabríos: Pellicer-Rubio *et al.*, 2007).

En los machos cabríos Criollos de la Comarca Lagunera, la exposición durante 2.5 meses de días largos artificiales, iniciando el 1 de noviembre, seguidos del fotoperiodo natural o de la aplicación de 2 implantes subcutáneos de melatonina, estimulan la secreción de LH, testosterona, comportamiento sexual, la producción espermática y un intenso olor en los meses que corresponden al periodo de reposo sexual (febrero-abril; Flores *et al*, 2000; Delgadillo *et al*, 2001; 2002; Bedos *et al*.,

2010; 2014). Recientemente, se ha demostrado en estos machos que un tratamiento fotoperiódico de 1 o 1.5 meses de días largos artificiales iniciándose el 1 de Noviembre, seguidos de días naturales son suficientes para estimular una intensa actividad sexual durante el periodo de reposo sexual natural (Ponce-Covarrubias *et al.*, 2014).

3. Inducción de la actividad sexual de las cabras mediante el efecto macho utilizando machos foto-estimulados

La estacionalidad reproductiva que manifiestan la mayoría de las razas de cabras de latitudes templadas y subtropicales constituye una limitante importante para la reproducción las hembras durante la época de inactividad sexual. Para resolver estas limitaciones asociadas con la estacionalidad reproductiva, se han utilizado las relaciones socio-sexuales para estimular la actividad sexual de las hembras durante esta época de anestro. Un ejemplo de ello, es la introducción de un macho en un grupo hembras sexualmente anovulatorias, lo cual estimula y sincroniza la secreción de LH, el comportamiento estral y las ovulaciones. Esta técnica de bioestimulación es llamada efecto macho (Chemineau, 1987). De hecho, los machos sexualmente activos, los cuales manifiestan una intensa actividad sexual por su previa exposición a uno de los tratamientos de largos artificiales antes descritos, logran inducir la ovulación y los estros en la mayoría (>90 %) de las hembras anéstricas (Flores *et al.*, 2000; Delgadillo *et al.*, 2002; Ponce-Covarrubias

et al., 2015). Por el contrario, los machos no tratados son incapaces de estimular la actividad sexual de las hembras durante esa época (<20%; Flores et al., 2000; Delgadillo et al., 2002; Muñoz et al., 2016).

La presencia repentina de un macho sexualmente activo en un grupo de hembras anéstricas estimula inmediatamente, en la mayoría de los casos, un incremento en la frecuencia de pulsos de GnRH y LH (Martin et al., 1986; Vielma et al., 2009). Posteriormente, las hembras desarrollan un pico preovulatorio de LH y la mayoría de ellas ovulan alrededor de 50 h después iniciado el contacto con el macho (Chemineau, 1983; 1987; Martin et al., 1986). En las cabras, esa ovulación inducida por macho se asocia con una conducta estral en aproximadamente el 60 % de los casos (Chemineau, 1983; 1987; Walkden-Brown et al., 1993). El porcentaje de hembras que resultan gestantes después de este estro es muy bajo debido a que el cuerpo lúteo que se desarrolla de la ovulación es de baja calidad. Lo anterior se debe a que la cantidad de células grandes responsables de la secreción de la mayor parte de progesterona es muy baja (Chemineau et al., 2006). Como resultado, la mayoría de las cabras hace un ciclo ovulatorio de corta duración y vuelve a ovular entre 5 a 7 días después en promedio. El cuerpo lúteo generado en esta segunda ovulación es de características y de duración normales y la mayoría de las hembras pueden quedar gestantes. Si no se produce la fecundación durante la segunda ovulación, se puede registrar una tercera ovulación alrededor de los 21 después de la introducción del macho (Chemineau, 1987; Flores et al., 2000).

Se ha demostrado que la aplicación de progesterona exógena antes (48 ó 24 horas) o al momento de introducir los machos suprime la presentación de los ciclos cortos (González-Bulnes *et al.*, 2006; Cortinas, 2015). Al parecer, lo anterior es debido a un bloqueo en la síntesis de prostaglandinas, lo cual impide que se lleve a cabo una luteólisis temprana (Chemineau *et al.*, 2006). Como resultado de dicha aplicación de la progesterona, en la mayoría de las hembras, un solo periodo de actividad estral y una sola ovulación en los primeros 3–5 días después de ser puestas en contacto con los machos (Lassaued *et al.*, 1995; González-Bulnes *et al.*, 2006). Finalmente, existen reportes recientes que indican que la aplicación de progesterona antes o al momento de la introducción del macho no afecta la fertilidad de las hembras (Cortinas, 2015).

4. Efecto de la producción de leche en la actividad reproductiva de las hembras

Existen estudios que indican que una alta producción de leche podría afectar la actividad sexual y reproductiva de las hembras (Butler *et al.*, 1998; 2003). Por ejemplo, en vacas existen reportes que han demostrado que el intervalo entre el parto y la manifestación del primer estro es mayor en vacas altas productoras que aquellas que producen menos leche (Harrison *et al.*, 1989). De igual manera, se ha reportado que las vacas altas productoras manifiestan conducta de estro más débil que aquellas de baja producción (Harrison *et al.*, 1990). Otro estudio similar

realizado por López *et al.* (2004) relaciona la alta producción de leche con un menor tamaño del folículo ovulatorio, el cual está probablemente relacionado con bajas concentraciones de estradiol y por consiguiente con ausencia de estro o una manifestación más débil. Los mismos autores (López *et al.*, 2004) reportan que en las vacas altas productores de leche la duración del estro es menor que en las vacas de baja producción. Lo anterior dificulta en gran medida la detección oportuna de las hembras en estro, lo cual disminuye considerablemente la fertilidad dado que los celos pasan inadvertidos.

A diferencia de la información que existe en vacas acerca de la influencia de la producción de leche en el comportamiento reproductivo, en las cabras no existen estudios que indiquen la influencia de una alta producción de leche sobre la actividad sexual y reproductiva. Como se mencionó anteriormente, la introducción de un macho en un grupo de hembras, estimula la actividad endocrina y sexual de las cabras anéstricas mediante el efecto macho (Flores et al., 2000). La proporción de hembras que ovulan o muestran un comportamiento estral después del efecto macho es variable dependiendo de las condiciones de cada estudio. Sin embargo, en la mayoría de los estudios la respuesta sexual va del 80 al 95 % y en muy pocos casos se alcanza el 100%. La fertilidad obtenida mediante el efecto macho varía del 60 al 80 %. En la mayoría de los estudios, existe una baja proporción de hembras que no responden al estímulo de los machos, responden con una latencia mayor o bien no quedan gestantes. No se conoce si esas hembras que no responden o no son gestadas son las hembras que producen más leche o bien se deba a otros

factores. Por ello, el objetivo del presente estudio fue determinar la importancia de una alta producción de leche en la respuesta estral y la fertilidad de las cabras cuando son estimuladas mediante el efecto macho.

MATERIALES Y METODOS

Los procedimientos experimentales y las actividades reportadas en este trabajo se realizaron durante el anestro estacional (abril) y se apegaron a las especificaciones técnicas de la norma oficial mexicana para la producción, cuidado y uso de los animales de laboratorio (SAGARPA-NOM-062-ZOO-2001).

1. Localización del experimento y características climáticas

El estudio se realizó en un rebaño comercial en el Ejido Santo Tomas, Municipio de Matamoros Coahuila. El clima es semidesértico, la temperatura promedio anual es de 23°C, la máxima es de 40°C se presenta en el mes de junio y la mínima de -3°C se presenta en el mes de diciembre. La precipitación pluvial media anual es de 230 mm. Las variaciones naturales del fotoperiodo en la Comarca Lagunera son de 13 h 41 min luz durante el solsticio de verano y de 10 h 19 min en el solsticio de invierno.

2. Animales experimentales utilizados en el estudio

2.1. Machos

En el presente estudio, se utilizaron 2 machos cabríos Criollos adultos, los cuales fueron alojados en instalaciones abiertas y sometidos a un tratamiento de 75 días largos artificiales (16 h luz/día) del 1 de noviembre de 2015 al 15 de enero de 2016. Durante el tratamiento fotoperódico y hasta que fueron puestos en contacto con las hembras, los machos fueron alimentados con heno de alfalfa a libre acceso

y 300g de concentrado artificial (14 % de P.C.). Además, siempre tuvieron libre acceso a agua limpia y sales minerales.

2.2. Hembras

Se seleccionaron 28 hembras caprinas adultas multíparas y anovulatorias, las cuales fueron separadas del resto del rebaño y estabuladas 2 meses antes del inicio del estudio. El parto de las cabras fue en promedio el 21 de enero ± 5 días. Todas las hembras producían leche y eran ordeñadas a mano una vez al día por las mañanas. Desde el momento de su estabulación, las hembras fueron alimentadas con heno de alfalfa y concentrado comercial (14 % de P.C.), además, tenían acceso a agua limpia y sales minerales. El estado anovulatorio de las hembras fue determinado mediante una ultrasonografía transrectal realizada 8 días antes de la introducción de los machos. El criterio para determinar si una hembra se encontraba anovulatoria, fue la ausencia de cuerpos lúteos en los ovarios determinado mediante una ecografía.

2.3. Formación de grupos experimentales de hembras

Tres días antes de la introducción de los machos, el grupo de cabras fue dividido en dos grupos (n=14 cada uno) de acuerdo a su producción de leche. En el primer grupo se seleccionaron las hembras con más baja producción de leche

 $(0.729 \pm 0.65 \text{ kg})$. El segundo grupo de hembras quedó conformado por las hembras de mayor producción láctea $(1.386 \pm 0.85 \text{ kg})$; Tabla 1; P<0.001).

Tabla 1. Producción de leche de las cabras.

Grupo	n	Condición corporal (Escala 1-4)	Producción de leche (kg)
Alta Producción	14	1.9±0.1	1.386 ± 0.85
Baja producción	14	1.9±0.1	0.729 ± 0.65
Baja producción	14	1.9±0.1	0.729 ± 0.6

2.4. Aplicación Intramuscular de progesterona

Cuarenta y ocho horas antes de la introducción de los machos, a cada hembra de los dos grupos se le aplicó por vía intramuscular 25 mg de progesterona. Lo anterior con la finalidad de disminuir la manifestación de ciclos ovaricos cortos (González–Bulnes *et al.*, 2006).

3. Inicio del contacto entre hembras y machos

El 28 de marzo (época de reposo sexual natural) a las 8:00 AM, los dos grupos de cabras con diferente producción de leche fueron puestos en contacto con 2 machos foto-estimulados. Cada grupo de hembras fue puesto en contacto con 1

macho. Los machos permanecieron con las hembras durante 5 días consecutivos y diariamente fueron intercambiados entre los dos grupos de hembras.

4. Variables evaluadas en el estudio

4.1. Actividad estral

La actividad estral fue determinada cada 6 horas durante 5 días consecutivos. El criterio para determinar si una hembra presento estro fue la inmovilidad y/o aceptación de la monta por parte del macho (Chemineau *et al.*, 1992).

a). Latencia al estro

La latencia al estro fue considerada como el tiempo que transcurrió desde la exposición de las hembras al macho hasta el inicio en la manifestación de la conducta estral.

4.2. Porcentaje de gestación

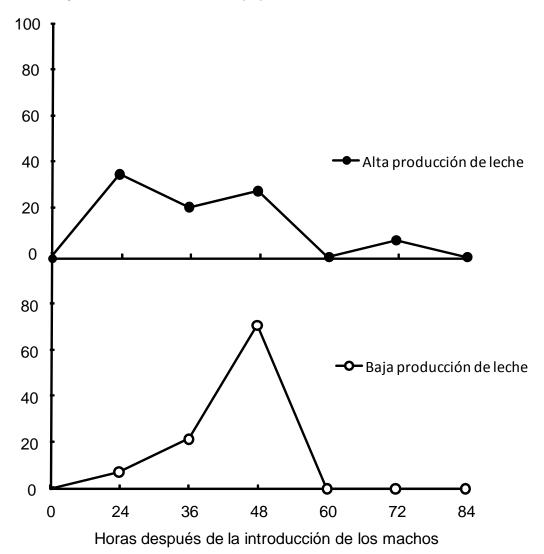
El porcentaje de hembras que resultaron gestantes fue determinado mediante ultrasonografía abdominal al día 35 después de la introducción de los machos. Para ello, se utilizó un equipo de ultrasonido marca Aloka SSD-500 equipado con un transductor para uso transrectal de 7.5 MHz.

5. Análisis de datos

Los porcentajes de hembras que manifestaron estro y el porcentaje de hembras gestantes) fueron comparados mediante una prueba exacta de probabilidades de Fisher. La latencia al estro fue comparada mediante una prueba de *t* de Student. En ambos casos se utilizó el paquete estadístico SYSTAT 10.

RESULTADOS

1. Actividad estral


1.1. Porcentaje de hembras en estro

El porcentaje total de hembras caprinas que manifestaron actividad estral después de ser puestas en contacto con los machos no fue diferente entre el grupo de alta producción láctea (13/14; 92.9%) y el grupo de hembras con menor producción de leche (14/14; 100%; P>0.05). En la Figura 1 se muestra la distribución de estros de las hembras de los grupos de hembras en los 5 días de contacto con los machos

1.2. Latencia al estro

El tiempo que transcurrió desde la introducción de los machos y el inicio del estro fue similar entre las hembras de alta producción de leche y las hembras de baja producción láctea (57.5 \pm 4.0 y 45.5 5 \pm 1.8 horas, para las hembras de alta y de baja producción de leche, respectivamente; P>0.05).

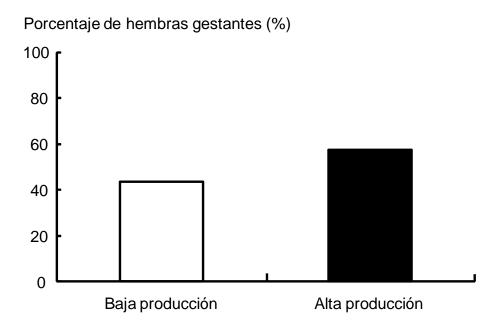

Porcentaje de hembras en estro (%)

Figura 1. Porcentaje de hembras que manifestaron actividad estral después de ser expuestas a machos foto-estimulados para inducir su actividad sexual durante el anestro estacional, en hembras con alta y en hembras con baja producción láctea. Todas las hembras fueron tratadas con una dosis única de 25 mg de progesterona 48 horas antes de la introducción de los machos.

1.3. Tasa de gestación

El porcentaje de hembras que fueron diagnosticadas gestantes a los 35 días post-introducción de los machos no difirió entre los 2 grupos de hembras expuestas a los machos foto-estimulados. En la Figura 2 se puede observar la proporción de hembras gestantes en el grupo de hembras de alta producción y en el grupo de hembras con baja producción de leche.

Figura 2. Porcentaje de hembras que fueron diagnosticadas gestantes a los 35 días después de ser expuestas a machos foto-estimulados para inducir su actividad sexual. El grupo de hembras de Alta producción producía en promedio 1.386 ± 0.85 kg y el otro grupo de Baja producción láctea producía un promedio de 0.729 ± 0.65 kg. Todas las hembras fueron tratadas con una dosis única de 25 mg de progesterona 48 horas antes de la introducción de los machos.

DISCUSIÓN

Los resultados del presente trabajo demuestran que una alta producción de leche de las hembras caprinas no disminuye su respuesta estral y ni la fertilidad de cuando son estimuladas mediante le efecto macho en combinación con la aplicación de progesterona. En efecto, más del 90 % de las cabras de alta producción de leche manifestaron actividad estral en los primeros 5 días de iniciado el contacto con los machos foto-estimulados. De igual manera, no se registró diferencia en la latencia al estro, ni en el porcentaje de hembras que resultaron gestantes entre las hembras que producían una mayor cantidad de leche y aquellas de baja producción. Los resultados obtenidos en el presente estudio no coinciden con lo reportado en vacas lecheras, donde se ha demostrado una fuerte relación entre la alta producción de leche y una disminución en actividad reproductiva (Butler, 1998; Harrison et al., 1989; 1990). Por ejemplo, en un estudio realizado por Harrison et al. (1989) en vacas Holstein, reportan que en las hembras con una alta producción de leche disminuye el porcentaje de hembras que manifiestan estro en la primera ovulación después del parto. En otro estudio, Lopez et al. (2004) reportan que en las hembras altas productoras la duración del estro disminuye considerablemente comparado con las hembras que producen menor cantidad de leche. Los mismos autores, reportan que las hembras altas productoras la manifestación del estro es más débil, lo cual dificulta la detección del mismo, repercutiendo directamente en una baja en la fertilidad. En nuestro estudio, la mayoría de las hembras de los dos grupos manifestó estro en las primeras 24-48 horas después de la introducción del macho y la duración del estro fue de duración normal en ambos grupos (alrededor de 25 horas). Lo anterior coincide con otros estudios en cabras donde se realizó el efecto macho utilizando machos foto-estimulados para inducir la actividad sexual en cabras durante el anestro estacional (Flores *et al.*, 2000; Delgadillo *et al.*, 2002; Bedos *et al.*, 2010; 2012; Ponce *et al.*, 2015; Muñoz *et al.*, 2016).

Nuestros resultados también coinciden con estudios anteriores donde se ha demostrado que la aplicación de progesterona antes o al momento de la introducción de los machos sincroniza la respuesta estral y evita la aparición de ciclos cortos (Chemineau et al., 2006; González-Bulnes et al., 2006; Cortinas, 2015). A pesar que no se conoce claramente los mecanismos fisiológicos implicados en la supresión o disminución de los ciclos cortos en cabras con la administración de progesterona y el efecto macho, algunos estudios han propuesto que esta hormona sincroniza la respuesta de las hembras estimuladas mediante el efecto macho, y que los folículos jóvenes empiezan a crecer por la acción de la FSH, y permitirán que ocurra la ovulación por el aumento en la frecuencia de pulsos de LH inducida por el macho, mientras que los folículos viejos decrecen y se atresian (Pearce y Robinson, 1985; Menchaca y Rubianes, 2001). Finalmente, en el presente estudio tampoco se registró una diferencia en el porcentaje de hembras gestantes entre las hembras que producen mayor cantidad de leche y aquellas menos productoras. Lo anterior no coincide con los estudios en vacas donde se ve una clara disminución de la fertilidad en las hembras altas productoras comparado con las hembras de menor producción de leche (López et al., 2004). En esa especie, probablemente, la

disminución en la fertilidad se deba a una disminución en la detección de estros. Al respecto, Lopez *et al.* (2004) relacionan la alta producción de leche con un menor tamaño del folículo ovulatorio, el cual está probablemente relacionado con bajas concentraciones de estradiol y por consiguiente con ausencia de estro o una manifestación del mismo más débil.

Por el contario, en nuestro estudio, la presencia continua durante 24 horas por 5 días de los machos cabríos permitió la detección oportuna y la monta de las hembras en estro. Lo anterior favoreció, probablemente, la ausencia de diferencia en porcentaje de hembras gestantes entre los dos grupos.

CONCLUSIÓN

Los resultados del presente estudio demuestran que una alta producción de leche de las hembras caprinas no influye en la manifestación de la respuesta estral, ni en la fertilidad cuando son estimuladas mediante el efecto macho en combinación con la aplicación de progesterona.

LITERATURA CITADA

- Bedos, M., Duarte, G., Flores, J.A., Fitz-Rodríguez, G., Hernández, H., Vielma, J., Fernández, I.G., Chemineau, P., Keller, M., Delgadillo, J.A. 2014. Two or 24 h of daily contact with sexually active males results in different profiles of LH secretion that both lead to ovulation in anestrous goats. Dom. Anim. Endocrinol. 48: 93–99.
- Bedos, M., Flores, J.A., Fitz-Rodríguez, G., Keller, M., Malpaux, B., Poindron, P., Delgadillo, J.A. 2010. For hours of daily contact with sexually active males is sufficient to induce fertile ovulation in anestrous goats. Horm. Behav. 58:473-477.
- Bedos, M., Velázquez, H., Fitz-Rodríguez, G., Flores, J.A., Hernández, H., Duarte, G., Vielma, J., Fernández, I.G., Retana-Márquez, M.S., Muñoz-Gutiérrez, M., Keller, M., Delgadillo, J.A. 2012. Sexually active bucks are able to stimulate three successive groups of females per day with a 4-hour period of contact. Physiol. Behav. 106: 259–263.
- Bronson, F., 1989. Seasonal strategies: Ultimate factors. In: FH Bronson (Ed.), Mammalian Reproductive Biology. University of Chicago Press, Chicago, pp. 28-59.
- Butler, W.R. 1998. Review: effect of protein nutrition on ovarian and uterine physiology in dairy cattle. J. Dairy Sci. 81:2533-2539.
- Butler, W.R. 2003. Energy balance relationships with follicular development, ovulation and fertility in postpartum dairy cows. Livest. Prod. Sci. 83: 211-218.
- Chemineau, P. 1993. Reproducción de las cabras originarias de las zonas tropicales. Rev. Latin. Peq. Rumian. 1: 167-172.
- Chemineau, P. 1987. Possibilities for using bucks to stimulate ovarian and oestrous cycles in anovulatory goats-a review. Lives. Prod. Sci. 17: 135-147.
- Chemineau, P., Malpaux, B., Delgadillo, J.A., Guerin, Y., Ravault, J.P., Thimonier, J., Pelletier, J. 1992. Control of sheep and goat reproduction: use of light and melatonin. Anim. Reprod. Sci. 30: 157-184.
- Chemineau, P., Pellicer-Rubio, M.T., Lassoued, N., Khaldi, G., Monniaux, D. 2006. Male-induced short oestrous and ovarian cycles in sheep and goats: a working hypothesis. Reprod. Nutr. Dev. 46: 417-429.
- Cortinas, D.M. 2015. La administración de progesterona reduce la presentación de ciclos cortos sin disminuir la fertilidad en cabras anéstricas expuestas a machos fotoestimulados. tesis de Maestría. Universidad Autónoma Agraria Antonio Narro. 38 p.
- Delgadillo, J.A., Canedo, G.A., Chemineau, P., Guillaume, D., Malpaux, B. 1999. Evidence for an annual reproductive rhythm independent of food availability in male creole goats in subtropical northern Mexico. Theriogenology. 52: 727–737.

- Delgadillo, J.A., Carrillo, E., Moran, J., Duarte, G., Chemineau, P., Malpaux, B. 2001. Induction of sexual activity of male creole goats in subtropical northern Mexico using long days and melatonin. J. Anim. Sci. 79: 2245–2252.
- Delgadillo, J.A., Flores, J.A., Veliz, F.G., Hernández, H., Duarte, G., Vielma, J. Poindron, P., Chemineau, P., Malpaux, B. 2002. Induction of sexual activity of lactating anovulatory female goats using male goats treated only with artificially long days. J. Anim. Sci. 80: 2780-2786.
- Delgadillo, J.A., Cortez, M.E., Duarte, G., Chemineau, P., Malpaux, B. 2004. Evidence that photoperiod controls the annual changes in testosterone secretion, testicular and body weight in subtropical male goats. Reprod. Nut. Dev. 44,183–193.
- Duarte, G., Flores, J.A., Malpaux, B., Delgadillo, J.A. 2008. Reproductive seasonality in female goats adapted to a subtropical environment persists independently of food availability. Dom. Anim. Endocrinol. 35: 362–370.
- Fernández-García, I.G., Luna-Orozco, J.R., Vielma, J., Duarte, G., Hernández, H., Flores, J.A., Gelez, H., Delgadillo, J.A. 2011. Lack of sexual experience does not reduce the responses of LH, estrus or fertility in anestrous goats exposed to sexually active males. Horm. Behav. 60:484–488.
- Flores, J.A., Véliz, F.G., Pérez-Villanueva, J.A., Martínez de la Escalera, G., Chemineau, P., Poindron, P., Malpaux, B., Delgadillo, J.A. 2000. Male reproductive condition is the limiting factor of efficiency in the male effect during seasonal anestrus in female goats. Biol. Reprod. 62:1409-1414.
- Gonzalez-Bulnes, A., Souza, C.J.H., Scaramuzzi, R.J.; Campbel, B.K., Baird, D.T. 2006. Long-term suppression of reproductive function by a single dose of gonadrotopin-realeasing hormone antagonists in a sheep model. Fert.And breeding: test of an hypothesis. J. Reprod. and Fertil. 58:521-535.
- Harrison, R.O., Young, J.W., Freeman, A.E., Ford, S.P. 1989. Effects of lactational level on reactivation of ovarian function, and interval from parturition to first visual oestrus and conception in high-producing Holstein cows. Anim. Prod. 49:23–28.
- Harrison, R.O., Ford, S.P., Young, J.W., Conley, A.J., Freeman, A.E. 1990. Increased milk production versus reproductive and energy status of high producing dairy cows. J. Dairy. Sci. 73: 2749–2758.
- Lopez, H., Satter, D.L., Wiltbank, M.C. 2004. Relationship between level of milk production and estrous behavior of lactating dairy cows. Anim. Reprod. Sci. 81: 209–223.
- Malpaux, B., Viguié, C., Skinner, D.C., Thiéry, J.C., Chemineau, P. 1997. Control of the circannual rhythm of reproduction by melatonin in the ewe. Brain Res. Bull. 44: 431-438.

- Martin GB, Oldham CM, Cognie Y, Pearce DT. 1986. The physiological response of anovulatory ewes to the introduction of rams—a review. Liv. Prod. Sci. 115:219–47.
- Pearce, D.T., Robinson, T.J. 1995. Plasma progesterone concentrations, ovarian and endocrnological responses and sperm transport in ewes with synchronized oestrus. J. Reprod. fertil. 75: 49-62.
- Pellicer-Rubio, M.T., Lebouf, B., Bernelas, D., Forgerit, Y., Pougnard, J.L., Bonné, J.L., Senty, E., Chemineau, P. 2007. Highly synchronous and fertile reproductive activity induced by the male effect during deep anoestrous in lactating goats subjected to treatment with artificially long days followed by a natural photoperiod. Anim. Reprod. Sci. 98: 241-58.
- Ponce, J.L., H. Velázquez, G. Duarte, M. Bedos, H. Hernández, M. Keller, Delgadillo, JA. 2014. Reducing exposure to long days from 75 to 30 days of extra-light treatment does not decrease the capacity of male goats to stimulate ovulatory activity in seasonally anovulatory females, Domest. Anim. Endocrinol. 48:119–125.
- Menchaca, A., Rubianes, E. 2004. New treatment associed with timed artificial insemination in small ruminans. Reprod. Fertil. Dev. 16:403-313.
- Muñoz, A.L., M. Bedos, R.M. Aroña, J.A. Flores, H. Hernández, C. Moussu, E.F. Briefer, P. Chemineau, M. Keller, J.A. Delgadillo. 2016. Efficiency of the male effect with photostimulated bucks does not depend on their familiarity with goats. Pysiol. Behav. 158: 137-142
- Sáenz-Escárcega, P, Hoyos F.G., Salinas, G.H., Espinoza, A.J, Guerrero, B.A., Contreras, G.E. Establecimiento de módulos caprinos con productores cooperantes. In: evaluación de módulos Caprinos en la Comarca Lagunera. Coahuila, Mexico: Matamoros; 1991. pp. 24–34.
- Secretaría De Agricultura, Ganadería, Desarollo Rural, Pesca Y Alimentación (2001). NORMA Oficial Mexicana NOM -062-ZOO-1999 Especificaciones técnicas para la producción, cuidado y uso de los animales de laboratorio. Diario Oficial de la Federación, 22 Agosto 2001.
- Thiéry, J.C., Chemineau, P., Hernandez, X., Migaud, M., Malpaux, B. 2002. Neuroendocrine interactions and seasonality. Dom. Anim. Endocrinol. 23: 87–100.
- Vielma, J., Chemineau, P., Poindron, P., Malpaux, B., Delgadillo, J.A. 2009. Male sexual behavior contributes to the maintenance of high LH pulsatility in anestrous female goats. Horm. Behav. 56 444:449.
- Walkden-Brown, S.W., Restall, B.J., Henniawati. 1993. The male effect in the australian cashmere goat. 2. Role of olfactory cues from the male. Anim. Reprod. Sci. 32: 55–67.